
Agile	Software	Development	Techniques	
for	Small	Scale	Research	Projects

“how	to	not	go	down	the	rabbit	hole”

Henriette Koning
Senior	Manager	Software	Delivery

But	first....

• Henriette Koning (me)
• We	will	talk	about
– Success	through	process	&	approach
– Focused	on	IT/software	projects
– Right	sized

• But	not
– Dev	technology	or	tools
– Architecture
– People	/	Skills

Why	some	process	is	a	good	thing

• Saves	time
• Saves	frustration
• Avoids	panic
• Creates	clarity
• MVP
–Minimum	Viable	Product
–Minimum	Viable	Process

• A	starting bit	– introducing	
the	cast	and	the	plot

• A	middle bit	– all	the	
excitement

• An	end bit	– happily	ever	
after

• And	a	good	start	is	critical.		
Puts	everything	in	place	for	
the	happy	ending

Consider	a	project	a	story

Ready?

And	the	story	starts....

• Once	up	on	a	time…	
• We	had	a	Brilliant	idea
• And	a	Talented	team
• And…
• “Oh	dear!	Oh	dear!	I	
shall	be	too late!”

And	we	rush	to	follow	the	white	rabbit

We	don’t	have	time	for	process

The	adversaries	&	
pitfalls
• Unknown	target	– hope	we’ll	figure	

it	out	along	the	way
• Bringing	it	together
– Sum	of	three	brilliant	parts	may	not	make	one	diamond

• Getting	to	100%
– How	far	along	are	we and	how	do	we	know	when	we’re	
done?

• Leaving	the	best	for	last
– The	last	10%	can	take	forever

• We	created	it	– but	how	do	we	see	if	it	is	good?
• How	do	we	make	decisions	along	the	way
• We	built	it	and	OMG	now	they’re	coming

The	Curtain	opens

• Our	project	usually	has
– Intended	outcome	(“deliverables”)	or	goal
– Start
– Finish

– Schedule
– Budget

And	the	project	is	kicked	
off

• How	will	we	know	when	we’re	‘done’
• What	does	success	look	like
• And	how	will	we	measure		or	validate	‘done’

In	the	beginning,	
Agree	on	the	happily	ever	after

“Done”	includes	Quality	Assurance	&	Validation

• Especially	for	algorithms
–What	data	will	you	need
– How	can	you	predict	outcome	by	another	means
–What	should	stay	constant
– How	many	scenarios,	etc.

• Error	conditions

In	the	beginning,	
Agree	on	the	happily	ever	after

Once	the	project	is	done,	
what	will	happen	to
• Data
• Documents
• Software
• Users
• Team

In	the	beginning,	
Agree	on	the	happily	ever	after

Thinking	about	how	the	software	will	be	used
• Where	will	it	live
• User	access
• Sustainment
• Funding
• Security

In	the	beginning...	Agree	on
Governance &	decision	making	
• Which	types	of	decisions
• Who	makes	them
• How	will	we	make	them
• What	data	is	needed	to	make	them

In	the	beginning...	Agree	on

• Scope	– in	big	huge	terms,	what’s	in,	what’s	
out

• Schedule	– how	long	do	we	have
• Budget	– how	much	money	do	we	have	(and	
for	which	part)

• Process:	
– how	will	we	run	the	project	
– what	do	we	need	to	report/track	progress	
(funding	agencies?)

Consider	the	infrastructure
• DEV	– QA	– PROD
• What	works	on	your	DEV	station	– does	it	work	somewhere	else?
• What	works	standalone	on	your	DEV	stations	– does	it	work	with	

the	other	team	member’s	code?
• Version	control	– to	deal	with	“it	worked	yesterday”
• Be	aware	of	dependencies

– File	system	structure
– Data	or	data	structure
– Libraries
– OS
– Tools
– Etc.

• A	separate	QA	environment	helps	prove	and	demo
• A	separate	PROD	for	more	secure	and	stable	environment

Project Charter
(or Terms of Reference)

• Clarity
• Agreement
• Sorting	this	out	at	the	
start	saves	SO	much	
time	later

• Can	be	a	few	pages,	but	
is	vital

• There	are	templates

Plot	thickens

Running	a project

• Methodology
–Waterfall
– Agile
=>	see	it	as	a	toolbox,	pick	&	choose,	and	much	of	it	
is	common	sense

• Progress	tracking
– Creates	clarity
– Allows	decisions

Waterfall

Waterfall
• Traditionally,	IT	projects	were	based	on	an	
engineering	approach
– Large	cost	of	change
– Ability	to	specify	outcome
– Language	for	specification

• Everything	designed	and	defined	at	the	beginning	
of	the	project

• Change	is	controlled,	schedule	is	committed	to
• And	for	some	IT	projects,	this	is	the	right	
approach!

AgileIncremental	and	Iterative
Change	is	embraced	(so	has	to	be	cheap)
Less	definition	and	specification,	more	delivery

Why	Agile	for	research?

• Early	validation
• Lots	of	
adjustment

• MVP	approach
• Small	teams

A	Daily	Stand-up	does	not	an	
Agile	Project	make

Agile	Software	Development

• Backlog	of	small	pieces		(features)
– decomposition

• Prioritization	(“grooming”)
• Deliver	and	Demo
• Review	and	adjust	– next	iteration
• Done
• Rinse	and	Repeat
– Danger:	don’t	keep	reworking	the	first	bit	and	never	
get	to	the	end	bit

Agile	approach	variants

• Scaled	Agile

• Scrum

• Kanban

More	complex

Less	complex

Large	projects	– Scaled	Agile

NOT	SUGGESTING	YOU	DO	THIS	J

Scrum

• Prioritized	backlog
– Features
– Acceptance	criteria

• Fixed	time	(typically	2	weeks)	– “Sprint”
• Definition	of	Done
• Team	commits	to	selecting	doable	priorities	
and	getting	them	to	done

• Something	almost	done	is	not	done	and	
moves	to	the	next	sprint

Sprint

Other	typical	aspects	of	agile
• Collaboration	– self	organized	teams
• Colocation
• Frequent	quick	group	meets	(daily	stand-ups,	5-
10	mins)

• Roles
– Product	manager	->	product	focus
– Team	(dev	&	test)	->	delivery	focus
– Scrum	master	->	process	focus

• Cross	functional
• Plan	&	retrospective	– continuous	improvement

Kanban

• Work	management	approach
• Work	is	pulled	when	capacity	becomes	
available

• From	prioritized	list	(“backlog”)
• Progress	(next	bit)	shown	on	kanban board

Progress	tracking

• Helps	communication	in	the	team
• Uses	schedule	and	budget	responsibly
• Allows	for	adjustment
• Great	for	PR

• Does	NOT	have	to	
take	a	lot	of	time!

Burn	up/down	charts

• Getting	to	100%	done	(or	0%	left)
• How	far	along	are	we?
• Are	we	on	track?
• Total	items	to	be	done,	curve	that	would	get	
everything	done	at	the	end	of	project,	and	
team’s	progress	by	period

Power	of	Dashboards

• Progress
• Readiness
• Helps	
discussion	
and	decision

Kanban board

• Public	presentation
• Tool	or	stickies

Kanban

Kanban

So	how	are	we	doing	on	our	plot

And	our	mighty	
adversaries…

Unknown	target
(This	is	research,	after	all….)

• Roadmap	/	backlog
• Review	&	Adjust	frequent	and	early
• Spikes
• Next	sprint	may	be	a	full	redo
• Prototype	or	concept	can	be	“done”
• Prove	out	small	pieces
• Demo	allows	for	team	review	and	critique	

Bringing	it	together
(Sum	of	three	brilliant	parts	may	not	make	one	diamond)

• “Done”	means	built	and	tested
• “Done”	means	Demo’d and	accepted
• Infrastructure	environment
– DEV-QA-PROD
– Avoid	dependencies

• SAVES	YOU	SOOOO	MUCH	TIME

Getting	to	100%

• Definition	of	Done
• Dashboarding and	progress	tracking
• Standups
• Reprioritize	when	
things	change

Leaving	the	best	for	last

• The	last	10%	can	take	
forever

• Prioritize	your	backlog
– Prerequisites	first
– Complex	first
–Must	haves	first

• You’ll	have	a	lot	of	things	
that	are	done	(rather	than	a	
lot	that	is	almost	done)

We	created	it..
(but	will	it	hold	up?)

• Demo’s
• Validation,	testing,	quality	assurance
– (even	better	if	you	can	define	a	feature	to	
automate	this!)

• Acceptance	criteria

How	do	we	make	decisions

• Backlog	grooming
• Governance	(charter)
• People	change,	people’s	minds	change	–
process	helps	

• Preset	your	decisions
– Acceptance	criteria
–Methodology
– Cadence

We	built	it	and	OMG	now	they’re	coming

Once	the	project	is	done,	what	will	happen	to
• Data
• Documents
• Software
• Users
• Team
• Sustainment
• Security

And...	It’s	a	wrap
(“The	End”	bit)

• Lessons	learned
• Publish	method
• Store	stuff
• Hand	over	to	a	sustainment	or	Ops	team

• So… to	sum	up

Agile	for	Research	Software	Dev

• Start	with	the	end	especially
– Definition	of	DONE
– Validation
–What	does	your	happily	ever	after	look	like

• Create	your	backlog
• What	is	your	MVP	– prioritize
• Try,	review,	improve,	try	again
• In	a	fixed	time	(scrum)	or	purely	prioritized	
(kanban)

In	the	beginning,	
Agree	on	the	happily	ever	after

• Write	a	charter
• Decide	your	process &	
tools	&	environments

• If	scrum,	then	define	
your	sprint	length

• Decide	how	you	track	
progress	and	when	to	
do	standups

In	the	beginning,	
Agree	on	the	happily	ever	after

• Thinking	about	how	the	software	will	be	used
– User	access
– Sustainment
– Security
– Data	management

Agile	for	research	Software	Dev

• Trust	that	it	IS	faster	and	
less	wasteful	than	just	
going	at	it

• When	you	hear	“Oh	dear!	
Oh	dear!	I	shall	be	
too late!”

• Don’t	follow	the	white	
rabbit	into	the	rabbit	hole

• Plan

The	Happy	End

Questions?

