BCNET =

Shared IT Services for Higher Education & Research

Conference 2018

Ceph: All-in-One Network Data Storage

What is Ceph and how we use it to backend the Arbutus cloud

A little about me, Mike Cave:

= Systems administrator for Research Computing Services at the University of Victoria.

= Systems administrator for the past 12 years
= Started supporting research computing in April of 2017
= Past experience includes:

= |dentity management

= Monitoring

= Systems automation

= Enterprise systems deployment

= Network storage management

My introduction to Ceph

It was my first day...

My introduction to Ceph

It was my first day...
Outgoing co-worker. “You'll be taking over the Ceph cluster.”

Me: “What is Ceph?”

= Today’s focus:

= Ceph: what is it?

= Ceph Basics: what makes it go”?

= Ceph at the University of Victoria: storage for a
cloud deployment

So, what is Ceph?

What is Ceph

= Resilient, redundant, and performant object storage
= Object, block, and filesystem storage options
= Scales to the exabyte range

What is Ceph

= No single point of failure
= \Works on almost any hardware

= Open source (LGPL) and community supported

Ceph Basics

Ceph Basics

= Ceph is built around, what they call, RADOS
= R: reliable
= A: autonomic

D: distributed

= O: object

= S: storage

= RADOS allows access to the storage cluster to thousands of clients,
applications and virtual machines

= All clients connect via the same cluster address, which minimizes
configuration and availability constraints

Ceph Basics
Storage Options

1.Object storage = RESTful interface to objects
= Compatible with:

= Swift
= S3
= NFS (v3/v4)
= Allows snapshots
= Atomic transactions
= QObject level key-value mapping

= Basis for Cephs advanced feature set

Ceph Basics
Storage Options

1. Object Storage = Expose block devices through RBD interface
= Block device images stored as objects

2.Block storage . -~
= Block device resizing

= (Offers read-only snapshots

= Thin provisioned, by default

= Block device more flexible than object storage

Ceph Basics
Storage Options

1. Object Storage = Supports applications that do not support object
storage

2.Block storage = Can be mounted to multiple hosts through Ceph
client

3. CephFS = Conforms to the POSIX standard

= High performance under heavy workloads

Ceph Basics
What is CRUSH

= As | mentioned earlier, the entire system is based on an algorithm called

CRUSH

CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data

Sage A. Weil Scott A. Brandt

Ethan L. Miller Carlos Maltzahn

Storage Systems Research Center
University of California, Santa Cruz
{sage, scott, elm, carlosm }@cs.ucsc.edu

Abstract

Emerging large-scale distributed storage systems are faced
with the task of distributing petabytes of data among tens
or hundreds of thousands of storage devices. Such systems
must evenly distribute data and workload to efficiently uti-
lize available resources and maximize system performance,
while facilitating system growth and managing hardware
failures. We have developed CRUSH, a scalable pseudo-
random data distribution function designed for distributed
object-based storage systems that efficiently maps data ob-
jects to storage devices without relying on a central direc-
tory. Because large systems are inherently dynamic, CRUSH
is designed to facilitate the addition and removal of storage
while minimizing unnecessary data movement. The algo-
rithm accommodates a wide variety of data replication and
reliability mechanisms and distributes data in terms of user-
defined policies that enforce separation of replicas across

mental task of distributing data among thousands of st
devices—typically with varying capacities and perforni
characteristics—remains.

Most systems simply write new data to underutilize
vices. The fundamental problem with this approach i
data is rarely, if ever, moved once it is written. Even 4
fect distribution will become imbalanced when the st
system is expanded, because new disks cither sit emp
contain only new data. Either old or new disks may be
depending on the system workload, but only the rarg
conditions will utilize both equally to take full advanta
available resources.

A robust solution is to distribute all data in a system
domly among available storage devices. This leads toa
abilistically balanced distribution and uniformly mixe;
and new data together. When new storage is added, a rar
sample of existing data is migrated onto new storage de|

BCI\Er Conference 2018

Ceph Basics
What is CRUSH

= As | mentioned earlier, the entire system is based on an algorithm called
CRUSH

= The algorithm allows Ceph to calculate data placement on the fly at the client
level, rather than using a centralized data table to reference data placement

CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data

Sage A. Weil Scott A. Brandt Ethan L. Miller Carlos Maltzahn
Storage Systems Rescarch Center
University of California, Santa Cruz
{sage, scott, elm, carlosm} @cs.ucsc.cdu

Abstract mental task of distributing data among thousands of st
devices—typically with varying capacities and perforn

Emerging large-scale distributed storage systems are faced characteristics —remains.

with the mk of dist |nhmng ’x‘uh\lc of data among tens

Most systems simply write new data to underutlize
vices. The fundamental problem with this spproach i
data is rarely, if ever, moved once it is written. Even s
n performance, fect distribution will become imbalanced when the st

n growth and managing hardware (e i e banded, because new disks cither sit cmp

eveloped CRUSH, a scalable pseudo- onygin only new data. Either old or new disks may be

random data disribution function designed for disribued P e LSS TR A U
s that efficiently maps data ob- cpigions will utlize both cqually to take full advanta

- available resources.

abilistically
and new data cther. When new storage is added, a rar

reliabilty mechanis sample of existing data is migrated onto new storage de

defined policies that enforce separation of replicas across

BCI\Er Conference 2018

Ceph Basics
What is CRUSH

= As | mentioned earlier, the entire system is based on an algorithm called
CRUSH

= The algorithm allows Ceph to calculate data placement on the fly at the client
level, rather than using a centralized data table to reference data placement

= You do not have to worry about managing the CRUSH algorithm directly.

= Instead you configure the CRUSH map and let the algorithm do the work for you.

CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data

Sage A. Weil Carlos Maltzahn

Abstract

Eme

with

BCI\Er Conference 2018

Ceph Basics
What is CRUSH

= As | mentioned earlier, the entire system is based on an algorithm called
CRUSH

= The algorithm allows Ceph to calculate data placement on the fly at the client
level, rather than using a centralized data table to reference data placement

= You do not have to worry about managing the CRUSH algorithm directly.
= Instead you configure the CRUSH map and let the algorithm do the work for you.

= The CRUSH map lets you lay out the data in the cluster to specifications
based on your needs

= The map contains parameters for the algorithm to operate on

= These parameters include

= Where your data is going to live

= And how your data is distributed into failure domains

CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data

Sage A. Weil Scott A. Brandt Carlos Maltzahn

Abstract mental task of distributing data among thousands of st
v ing cay and perforn

Emerging large-scale distribu

BCI\Er Conference 2018

Ceph Basics
What is CRUSH

= As | mentioned earlier, the entire system is based on an algorithm called
CRUSH

= The algorithm allows Ceph to calculate data placement on the fly at the client
level, rather than using a centralized data table to reference data placement

= You do not have to worry about managing the CRUSH algorithm directly.
= Instead you configure the CRUSH map and let the algorithm do the work for you.

= The CRUSH map lets you lay out the data in the cluster to specifications
based on your needs

= The map contains parameters for the algorithm to operate on
= These parameters include
= Where your data is going to live

= And how your data is distributed into failure domains

= Essentially, the CRUSH map is the logical grouping of the available devices
you have available in the cluster

BCI\Er Conference 2018

CRUSH: Controlled, Scalable, Decentralized Placement of Replicated Data

Sage A. Weil Scott A. Brandt Carlos Maltzahn

Abstract mental task of distributing data among thousands of st
v ing cay and perforn

Emerging large-scale distribu

CRUSH

A Basic Example

A Basic CRUSH Example

The Hardware

= Lets build a quick cluster... H
= The basic unit of our cluster is the hard drive

A Basic CRUSH Example

The Hardware

Lets build a quick cluster... H
= The basic unit of our cluster is the hard drive — OS D

A Basic CRUSH Example

The Hardware

= Lets build a quick cluster...

= The basic unit of our cluster is the hard drive

= \We will have 10 OSDs in each of our servers

BCI\Er Conference 2018

A Basic CRUSH Example

The Hardware

Lets build a quick cluster...

The basic unit of our cluster is the hard drive

We will have 10 OSDs in each of our servers

Add 9 servers

A Basic CRUSH Example

The Hardware

= Lets build a quick cluster...

= The basic unit of our cluster is the hard drive
= We will have 10 OSDs in each of our servers
= Add 9 servers

= Then we’ll put them into three racks

Rack A

Rack B

Rack C

A Basic CRUSH Example

The Hardware

= Lets build a quick cluster...
= The basic unit of our cluster is the hard drive

= \We will have 10 OSDs in each of our servers

= Add 9 servers

= Then we’ll put them into three racks Rack B
1 5 |
1 5 |

= And now we have a basic cluster of equipment

= Now we can take a look at how we’ll overlay CRUSH
map

A Basic CRUSH Example
CRUSH Rules: Buckets

= Now we have the cluster built we need to define the
logical groupings of our hardware devices into
‘buckets’ which will house our data

= We will define the following buckets: ‘ ‘
AT T T
e
e

A Basic CRUSH Example
CRUSH Rules: Buckets

= Now we have the cluster built we need to define the
logical groupings of our hardware devices into
‘buckets’ which will house our data

= We will define the following buckets:

s Cluster - called the ‘root’ bucket

Rack B

[[§
L[5 L
{1l]

A Basic CRUSH Example
CRUSH Rules: Buckets

= Now we have the cluster built we need to define the
logical groupings of our hardware devices into
‘buckets’ which will house our data

= We will define the following buckets:

s Cluster - called the ‘root’ bucket Rack B

= Rack — collection of servers

i
LLE
|

A Basic CRUSH Example
CRUSH Rules: Buckets

= Now we have the cluster built we need to define the
logical groupings of our hardware devices into
‘buckets’ which will house our data

= We will define the following buckets:

s Cluster - called the ‘root’ bucket

Rack A Rack B Rack C

= Rack — collection of servers
= Server - collection of OSDs (HDs) Server 1 Server 4 Server 7

Server 2 Server 5 Server 8

Server 3 Server 6 Server 9

A Basic CRUSH Example
CRUSH Rules: Rule Options

= CRUSH rules tell the cluster how to organize the
data across the devices defined in the map

Rack B

[[§
L[5 i
{1l]

A Basic CRUSH Example
CRUSH Rules: Rule Options

= CRUSH rules tell the cluster how to organize the
data across the devices defined in the map

= In our simple case we’ll define a rule called

“replicated_ruleset” with the following parameters: ‘ ‘

= |ocation — root
AT T T
1 5 |
1 5 |

A Basic CRUSH Example
CRUSH Rules: Rule Options

= CRUSH rules tell the cluster how to organize the
data across the devices defined in the map

= In our simple case we’ll define a rule called
“replicated_ruleset” with the following parameters:

= |ocation — root

Rack B

= Failure domain — Rack

[[§
L[5
1

A Basic CRUSH Example
CRUSH Rules: Rule Options

= CRUSH rules tell the cluster how to organize the
data across the devices defined in the map

= In our simple case we’ll define a rule called
“replicated_ruleset” with the following parameters:

= |ocation — root

Rack B

= Failure domain — Rack

= Type — Replicated

T
o

A Basic CRUSH Example

Pools

= Data inside of Ceph is stored in ‘pools’

= The pool allows for specific bounds around how data
is stored and who can access it

A Basic CRUSH Example

Pools

= Data inside of Ceph is stored in ‘pools’

= The pool allows for specific bounds around how data _
is stored and who can access it Volumes

= Some basic required:

= Name of pool

A Basic CRUSH Example

Pools

= Data inside of Ceph is stored in ‘pools’

= The pool allows for specific bounds around how data _
is stored and who can access it Volumes
= Some basic required: _

= Name of pool 24 PGs

= Number of ‘placement groups’

A Basic CRUSH Example

Pools

= Data inside of Ceph is stored in ‘pools’

= The pool allows for specific bounds around how data
is stored and who can access it

= Some basic required:
\ 24 PGs
= Name of pool

Volumes

= Number of ‘placement groups’ Replicated

= Storage rule

= Minimum size - triple

A Basic CRUSH Example

Pools

= Data inside of Ceph is stored in ‘pools’

= The pool allows for specific bounds around how data

is stored and who can access it Volumes

= Some basic required:

24 PGs

= Name of pool

= Number of ‘placement groups’

Replicated

= Storage rule
= Minimum size - triple RBD

= Pool application association - rgw/rbd/cephfs

A Basic CRUSH Example

Pools

= Data inside of Ceph is stored in ‘pools’

= The pool allows for specific bounds around how data
is stored and who can access it

= Some basic required:
= Name of pool
= Number of ‘placement groups’
= Storage rule
= Minimum size - triple
= Pool application association - rgw/rbd/cephfs

= Many pool options (class, size, cleaning, etc.)

BCI\Er Conference 2018

Volumes

24 PGs

Replicated
RBD

A Basic CRUSH Example

Pools: Users

= Pool access is based on users and keys

Volumes

A Basic CRUSH Example

Pools: Users

= Pool access is based on users and keys

= You first create a user for your pool

Volumes

volumes_user

A Basic CRUSH Example

Pools: Users

= Pool access is based on users and keys
= You first create a user for your pool

Volumes
= Then assign standard POSIX permissions

volumes_user

rw

A Basic CRUSH Example
CRUSH Recap

= Create the CRUSH map

= Organize physical resources into ‘Buckets’

Rack B

[[§
L[5 i
{1l]

A Basic CRUSH Example
CRUSH Recap

= Create the CRUSH map
= Organize physical resources into ‘Buckets’
= Create your CRUSH rule

= Data distribution into ‘buckets’

Rack B

[[§
L[5
1

A Basic CRUSH Example
CRUSH Recap

= Create the CRUSH map
= Organize physical resources into ‘Buckets’
= Create your CRUSH rule

= Data distribution into ‘buckets’

Rack B

= Create a data pool

= Defines data management using CRUSH rule
= Access
= Distribution — PGs

=
—

Pool: Volumes

User: volumes_user

Ceph Resiliancy

How does Ceph make sure the data is safe

Resiliency

= Lets look at why by using the the Volumes pool Pool: Volumes

as an example:

Resiliency

= Lets look at why by using the the Volumes pool
as an example:

Pool: Volumes

= Defined 24 placement groups (PGs)

= Using the “replicated_ruleset”

Resiliency

= Lets look at why by using the the Volumes pool
as an example:

= Defined 24 placement groups (PGs)
= Using the “replicated_ruleset”

= So it breaks down:
= Each rack gets 24 PGs

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs

Resiliency

= Lets look at why by using the the Volumes pool
as an example:

= Defined 24 placement groups (PGs)
= Using the “replicated_ruleset”

= So it breaks down:
= Each rack gets 24 PGs

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs

Resiliency

= Lets look at why by using the the Volumes pool
as an example:

= Defined 24 placement groups (PGs)
= Using the “replicated_ruleset”

= So it breaks down:
= Each rack gets 24 PGs

= All three racks have a copy of the data

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

Resiliency

= Lets look at why by using the the Volumes pool

as an example:
= Defined 24 placement groups (PGs)
= Using the “replicated_ruleset”

= So it breaks down:
= Each rack gets 24 PGs

= All three racks have a copy of the data

= Each server gets 8 PGs

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

Resiliency

= Lets look at why by using the the Volumes pool
as an example:

= Defined 24 placement groups (PGs)
= Using the “replicated_ruleset”

= So it breaks down:
= Each rack gets 24 PGs

= All three racks have a copy of the data
= Each server gets 8 PGs
= This means that if you lose an OSD, the data

can be pulled from another OSD elsewhere in
the cluster

= Even if you lose a rack you maintain data
access

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

Resiliency

= What happens when you do lose a device, lets

say an entire server?

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

Resiliency

= What happens when you do lose a device, lets

say an entire server?

= Well the system looks at that and says, okay no

problem.

= First it drops that set of OSDs from the cluster

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 PGs 8 PGs 8 PGs

0 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

Resiliency

= What happens when you do lose a device, lets
say an entire server?

= Well the system looks at that and says, okay no
problem.

= First it drops that set of OSDs from the cluster

= Then is replicates the PGs from the other
members of the cluster on to neighboring OSDs

= While the server is out of the cluster you lose that

capacity but once the PGs are replicated the
cluster is healthy again.

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 +4 PGs 8 PGs 8 PGs

0 PGs 8 PGs 8 PGs

8 +4 PGs 8 PGs 8 PGs

Resiliency

= Once the server is brought back online the
cluster checks its health

BCI\Er Conference 2018

Pool: Volumes

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 +4 PGs 8 PGs 8 PGs

0 PGs 8 PGs 8 PGs

8 +4 PGs 8 PGs 8 PGs

Resiliency

= Once the server is brought back online the
cluster checks its health

= Then the PGs that are in the temporary
locations are migrated back to the replaced

server

BCI\Er Conference 2018

Pool: Volumes

24 PGs

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

Resiliency

= Once the server is brought back online the

cluster checks its health

Then the PGs that are in the temporary
locations are migrated back to the replaced

server

The lost capacity is recovered and all
operations continue normally

BCI\Er Conference 2018

Pool: Volumes

24 PGs

Rack 1: 24 PGs Rack 2: 24 PGs Rack 3: 24 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

8 PGs 8 PGs 8 PGs

Ceph Management
How Ceph manages the cluster and client access

Ceph Management

= Ceph has two types of nodes: Data

1. Data nodes — OSD servers

Ceph Management
Monitor nodes

= Ceph has two types of nodes: Data

2. Monitor nodes — cluster managers .
Monitor

1. Data nodes — OSD servers

Ceph Management
Monitor nodes

= Tasks include:
= Cluster health

Ceph Management
Monitor nodes

= Tasks include:
= Cluster health

= |nitial client connections .
Monitor

Ceph Management

Monitor nodes

= Tasks include:
= Cluster health

= |nitial client connections

= Manager API Monitor

Ceph Management

Monitor nodes

= Tasks include:

= Cluster health

= |nitial client connections

= Manager API Monitor

= Data cleaning/consistency checking

Ceph Management

Monitor nodes: Monitoring

= The primary function is monitoring the cluster’s
performance and health

= These nodes watch

Data throughput of the cluster
Health of the OSDs

Heath of the PGs

Basic details at a glance

In-depth analysis for all aspects of the cluster
performance

BCI\Er Conference 2018

cluster 41e815d5-eaa2-4fda-9d99-685dd7bS5¢9c
health HEALTH_OK
mormap el: 3 mons at {nefelimon@1=10,39,11,231:6789/0,nefelimond2=10,39.11,232:6789/0, nefelimond3=10.39,11,233:6789/0}
election epoch 382, quorum 0,1,2 nefelimondl,nefelimond2,nefelimond3
fsmap e117; 1/1/1 up {@=nefelimond2=up:active}, 2 up:standby
osdmap e427238: 280 osds: 280 up, 280 in
flags sortbitwise,require_jewel_osds
pomap v107437507: 61440 pgs, 8 pools, 333 TB data, 84778 kobjects
1002 TB used, 5% TB / 1599 TB avail
61440 activesclean
client io 101891 kB/s rd, 173 MB/s wr, 1066 op/s rd, 1826 op/s wr

Ceph Management

Monitor nodes: Initial Client Connection

= |nitial client connections involve a couple of
things:

= When the client connects it announces what type
of connection its making (Object, RBD, or
CephFS)

= Exchanges keys for authentication/authorization

= Gets a copy of the CRUSH map

= From there the client has all the information
needed to read/write data in the cluster

= The monitors do not process data in the cluster
for the clients — the clients speak directly with
the OSDs that host the data

BCI\Er Conference 2018

Incoming Client

CRUSH map
retrieval

Authorization

Service Type:
Object store

Key Exchange

Ceph Management
Monitor nodes: Manager API

= The manager API brokers a couple of important
functions:

= |ssuing commands to the cluster

= Allows connections to third party applications — —
1.562 PiB 1003 TiB

= Graphana/Prometheus — visualization of cluster
statistics

BCI\Er Conference 2018

Ceph Management
Monitor nodes: Manager API

= The manager API brokers a couple of important
functions:

= |ssuing commands to the cluster

= Allows connections to third party applications

= Graphana/Prometheus — visualization of cluster
statistics

= openAttic — cluster management through a web GUI i R oo

democephot | — post

democephoz | — post

domocephts | — post

domocephos | — post
,,,,,,,,

democephs | — post

BCI\Er Conference 2018

Ceph Management
Monitor nodes: data consistency/cleaning

= The monitor nodes are responsible for ensuring
the consistency of the data in the PGs and
guard against ‘bit rot’

Device Undetectable Bit Error Rate
Enterprise Disk 1In 1078
Enterprise SSD 1in 10"
Hardened SSD 1in 1018
LTO-7 1in10°'¢
Oracle T10000 1in107"®
IBM TS1150 1in10°%

Ceph Management
Monitor nodes: data consistency/cleaning

= The monitor nodes are responsible for ensuring
the consistency of the data in the PGs and
guard against ‘bit rot’

= The process is called ‘scrubbing’

Device Undetectable Bit Error Rate
Enterprise Disk 1In 1078
Enterprise SSD 1in 10"
Hardened SSD 1in 1018
LTO-7 1in10°'¢
Oracle T10000 1in107"®
IBM TS1150 1in10°%

Ceph Management
Monitor nodes: data consistency/cleaning

= The monitor nodes are responsible for ensuring
the consistency of the data in the PGs and
guard against ‘bit rot’

= The process is called ‘scrubbing’

= Scrubbing can cause some performance hits

Device Undetectable Bit Error Rate
Enterprise Disk 1In 1078
Enterprise SSD 1in 10"
Hardened SSD 1in 1018
LTO-7 1in10°'¢
Oracle T10000 1in107"®
IBM TS1150 1in10°%

Ceph Management

Monitor nodes: data consistency/cleaning

= The monitor nodes are responsible for ensuring
the consistency of the data in the PGs and
guard against ‘bit rot’

= The process is called ‘scrubbing’

= Scrubbing can cause some performance hits ==

= Best to schedule

!

= Ensure entire cluster is checked weekly

Ceph at the University of Victoria

Backing a cloud deployment

Ceph at UVic

Current State

= Current cluster is: U‘I I c

= 3 Monitor nodes

18 Data nodes

compute | calcul
= 10-10x4TB canada canada
= 8-20x8TB
1.6 PB

= 500T Usable

Redundant 10G client/replication network

Single 1G for management

Ceph at UVic

Future State

= New cluster:

3 Monitor nodes

42 Data nodes

= 10-10x4TB

= 8-20x8TB

= 24 -20x10TB

6.4 PB Raw

= ~4 PB Usable

= Employing mixture of Erasure Coding and Replication
Redundant 10G client/replication network

Single 1G for management

Possible expansion for special projects

BCI\Er Conference 2018

UVIC

compute | calcul
canada

canada

Ceph at UVic
Arbutus Cloud

= One of the largest non-commercial clouds in [—
Canada N

= Phase 2 is underway

= Hosting for researcher platforms and portals o p e n S t a C k®

= HPC in the cloud

ceph

Questions

Please feel free to reach out to me via email;

mcave@uvic.ca

Resources

= Ceph:

= http://ceph.com

= http://docs.ceph.com/docs/master/
= CRUSH

= https://ceph.com/wp-
content/uploads/2016/08/weil-crush-sc06.pdf

= Compute Canada
= https://www.computecanada.ca/

= OpenStack

= https://www.openstack.org/

BCI\Er Conference 2018

