

Robert Barton, Principal Systems Engineer Cisco

Unprecedented Demands on the Network

Digital Disruption

63 million new devices online every second by 2020¹

Complexity

3X spend on network operations vs network²

Slow and Error Prone Operations

Security

6 months to detect breach³

Unconstrained Attack Surface

Lack of Business and IT Insights

- 1: Gartner Report Gartner's 2017 Strategic Roadmap for Networking
- 2. McKinsey Study of Network Operations for Cisco 2016
- 3. Ponemon Research Institute Study on Malware Detection, Mar 2016

Key Challenges for Traditional Networks

Difficult to Segment

Ever increasing number of users and endpoint types

Ever increasing number of VLANs and IP Subnets

Complex to Manage

Multiple steps, user credentials, complex interactions

Multiple touch-points

Slower Issue Resolution

Separate user policies for wired and wireless networks

Unable to find users when troubleshooting

Rewriting the Networking Playbook

Hardware centric

Software driven (SDN)

Manual Configuration

Automated and end-to-end

Silo'd Security and Policies

Integrated Security / Policy

Network Monitoring

Analytics and Insights

Software-Defined Access (SDA)

Software Defined Access (SDA): The Campus Fabric + DNA-Center

SD-Access

- DNA-Center GUI approach provides automation & assurance of all Fabric configuration, management and group-based policy.
- Leverages DNA Center to integrate external Service Apps, to orchestrate your entire LAN, Wireless LAN and WAN access network.
- A new paradigm for campus network based on overlay technologies and agile security policy

Software Defined Access (SDA)

What exactly is a Fabric?

A Fabric is an Overlay

- An Overlay network is a logical topology used to virtually connect devices, built on top of some arbitrary physical Underlay topology.
- An Overlay network network often uses alternate forwarding attributes to provide additional services, not provided by the Underlay.

Examples of Network Overlays	
GRE or mGRE	• LISP
 MPLS or VPLS 	 OTV
 IPSec or DMVPN 	• DFA
 CAPWAP 	• ACI

SD-Access

Fabric Terminology

SD-Access

Campus Fabric - Key Components

- 1. Control-Plane based on LISP (RFC 6830)
- 2. Data-Plane based on VXLAN (RFC 7348)
- 3. Policy-Plane based on CTS (RFC 3514)

SD-Access Fabric

Key Components – LISP

1. Control-Plane based on LISP

Routing Protocols = **Big Tables** & **More CPU** with Local L3 Gateway

BEFORE

IP Address = Location + Identity

Endpoint Routes are Consolidated to LISP DB LISP DB + Cache = **Small Tables** & **Less CPU** with Anycast L3 Gateway

AFTER

10

Locator / ID Separation Protocol

LISP Mapping System

LISP "Mapping System" is analogous to a DNS lookup

DNS resolves IP Addresses for queried Name

Answers the "WHO IS" question

DNS Name -to- IP **URL** Resolution

LISP resolves Locators for queried Identities

Answers the "WHERE IS" question

LISP ID -to- Locator Map Resolution Locator / ID Separation Protocol

LISP Roles & Responsibilities

Map Server / Resolver

- EID to RLOC Mappings
- Can be distributed across multiple LISP devices

Tunnel Router - XTR

- Edge Devices Encap / Decap
- Ingress / Egress (ITR / ETR)

Proxy Tunnel Router - PXTR

- Connects between LISP and non-LISP domains
- Ingress / Egress (PITR / PETR)

- EID = End-point Identifier
 - Host Address or Subnet
- RLOC = Routing Locator
 - Local Router Address

Locator / ID Separation Protocol How does LISP operate? 5.3.3.3 5.1.1.1 5.2.2.2 **3** EID-prefix: 10.2.0.1/32 Mapping Locator-set: Entry 2.1.1.1, priority: 1, weight: 50 (D1) Path Preference Controlled by Destination Site 2.1.2.1, priority: 1, weight: 50 (D2) **DNS Entry: Branch** D.abc.com A 10.2.0.1 10.1.0.0/24 10.1.0.1 > 10.2.0.1 **IP Network** 1.1.1.1 → 2.1.1.1 10.1.0.1 > 10.2.0.1 ETR 2.1.2.1 $10.1.0.1 \rightarrow 10.2.0.1$ Campus D 10.2.0.0/24

VXLAN Data Plane and Policy / Security Plane

SD-Access Fabric Key Components – VXLAN

- 1. Control-Plane based on LISP
- 2. Data-Plane based on VXLAN

16

SD-Access Fabric

Key Components – CTS

- 1. Control-Plane based on LISP
- 2. Data-Plane based on VXLAN
- 3. Policy-Plane based on CTS

18

Redesigning Network Policy with SGTs

Non-Compliant

Quarantine

VIAN

Voice

Voice

VIAN

Employee

Data

VIAN

Guest

VIAN

Traditional access control is extremely complex – aka "Cisco TrustSec"

Enforcement IP Based Policies -ACLs, Firewall Rules

Propagation

Carry "Segment" context through the network using VLAN, IP address, VRF

Classification VLAN assignments

BYOD

BYOD

VIAN

Static or Dynamic

VLAN

maintenance

SGTs with Cisco TrustSec

Simplified access control with Group Based Policy

Enforcement

Group Based Policies ACLs, Firewall Rules

Propagation

Carry "Group" context through the network using only SGT

Classification

Static or Dynamic SGT assignments

Cisco TrustSec

Identity Services Engine (ISE) enables CTS

NDAC authenticates Network Devices for a trusted CTS domain

SGT & SGT Names

Centrally defined Endpoint ID Groups

SGACL - Name Table

Policy matrix to be pushed down to the network devices

ISE dynamically authenticates endpoint users and devices, and assigns SGTs

Bringing it all Together: DNA Center

Data Analytics of the Network

The more you use it, the wiser it gets.

Constantly Learning

Support 100X new devices, apps, users

Constantly Adapting

Respond Instantly to business demands with limited staff and budget

Constantly Protecting

See and predict issues and threats and respond fast

DNA Center Data Analytics – Time Series Analysis

Time series data: (assurance performance KPIs)

A set of observations collected at equally spaced time intervals for a variable:

Purpose of Time Series Analytics:

- Study past behavior in order to formulate policies or decisions
- Compare the changes in the values of different time
- Predict or estimate or forecast the future behavior

DNA Center Supports Time Series Operations:

- Statistical computation: mean, std, percentile, histogram, moving_avg, etc.
- Windowing: fix, sliding, session, global
- Lag and missing data
- Preserve raw data for time range queries
- Tenant aware

THANK YOU!!